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"We'll have to go with four two-head pumps for the nitrifier." 
The AI controls engineer frowned at the speaker, a young M.E. in charge of the 

physical design of a state-of-the-art biological water processor (BWP).  "But that pump 
doesn't give me any feedback for speed, so we can't be sure it's responding to 
commands." 

"It'll have to do," said a woman at the far end of the conference table.  As the 
manager for the integrated water recovery system (iWRS), she made the final calls. "The 
eight-head pump won't function at the required pressures and the four-heads are just too 
expensive.  Can't you use the tube pressures to know if the pumps are working?" 

The controls engineer shrugged, spreading his hands. "Sure, but with the single 
transducer to monitor eight tubes, we won't know for three to five minutes after the pump 
command is sent." 

"Can we live with that?" asked the manager, glancing around the table at each 
member of the assembled group of microbiologists, chemical and fluids engineers. 

One of the engineers tapped at his PDA then spoke up. "Even at 32 mils a minute, 
the pressure build-up from the recirculation pump won't be enough to trigger the relief 
valve.  I think it's in the noise." 

"Okay," said the manager. "We go with the two-heads." 
 
The time frame was the winter of 1999, and the above exchange was typical of 

many the AI controls team from the Robotics, Automation and Simulation Division 
(AR&SD) at Johnson Space Center would have with the advanced water recovery 
personnel as the two groups prepared for a year long test of a new iWRS, slated to begin 
in January of 2001.  We were building an AI control system which for that test had to 
handle upwards of 200 sensors and actuators grouped among four water processing 
subsystems. The control system would run 24/7 and be completely autonomous.  It was 
an applied AI engineer's dream and in the end we were extremely successful; but there 
were things that happened for which we were ill prepared and we would come away with 
a much better appreciation for what we had undertaken. 

This article is the story of our experiences developing and running the iWRS AI 
control system. 

 
The Early Years 

 
Since 1995, the AI controls team had been working with several groups in the 

Crew and Thermal Systems Division (CTSD), building AI control systems in support of 
CTSD's investigations in the area of advanced life support (ALS).  In 1995, they put a 
man in an airlock linked to a fifteen-foot diameter chamber full of wheat (Lai-fook & 
Ambrose 1997).  For fifteen days, the man lived, worked and exercised in the chamber 
while the wheat crop took in his carbon dioxide and produced oxygen for him.  Our 



control system -- the first for ALS -- monitored and provided caution and warnings 
(C&W) for the climate and nutrient environment for the wheat crop. 

In 1997 they put two men and two women in a thirty-foot chamber for ninety-one 
days (see Figure 1) (Schreckenghost et al, 1998a). A physical-chemical air revitalization 
system recycled the air for three of the four people, while a wheat crop in the fifteen-foot 
chamber provide did the same for the fourth.  The ALS team also experimented with a 
solid waste incinerator. Our second ALS AI control system managed the transfer of O2 
and CO2 among gas reservoirs to ensure crew and crop health and to recycle gases 
produced by waste incineration.  These reservoirs included a crew habitat, a plant 
chamber, an airlock, and a number of pressurized tanks (see Figure 1).  Operating 24/7, 
the AI system employed a generative planner that scheduled waste incinerations and crop 
planting and harvesting, coordinating those tasks with the day-to-day product gas 
transfer. 

 
 

 
Figure 1. The Product Gas Transfer Environment. 

 
For both of these projects we used a three-layer architecture (Gat 98) to design, organize 
and develop the control software.  AR&SD had used a particular implementation of this 
architecture known as 3T (see sidebar) in a number of robot projects prior to 1995 
(Bonasso et al 1997), and since life support systems are a form of immobots (Williams 
and Nayak, 1996), its application to ALS projects was straightforward. 
 



 
 

3T SIDEBAR 

The 3T Intelligent Control System 
 
The ALS control system uses the intelligent control software for autonomous systems known as 3T 
(Bonasso et al, 1997)  (see figure), which separates the general robot intelligence problem into three 
interacting tiers (see Figure 2): 
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Figure 2. The 3T AI Control Architecture 

 
°  A set of robot specific, situated skills (or behaviors) that represent the architecture's connection 
with the world through the sensors and actuators. The term situated skills is intended to denote a capability 
that, if placed in the proper context, will achieve or maintain a particular state in the world. 3T’s 
implementation includes primitive actions, queries and monitoring events that can be combined to form 
autonomous behaviors. 3T's skill layer is a distributed set of skill groups coordinated by a skill manager for 
each ALS subsystem. For the iWRS system, control signals and sensor data for the skills are obtained from 
a suite of VME analog to digital (A/D) conversion cards in the controls rack co-located with the CPUs (we 
are using a VME bus, with Vxworks running on Power PCs). 
 
°  A sequencing capability that can differentially activate the situated skills in order to direct changes 
in the state of the world and accomplish specific tasks. 3T uses the Reactive Action Packages (RAPs) 
system (Firby 99) for this portion of the architecture. The RAPs engine is an interpreter, indexing RAPs 



(essentially sets of linear plans) from a library based on the changing world situation. Thus one can change 
a RAP or add new RAPs while the sequencer is executing. 
 
°  A deliberative planning capability that reasons in depth about goals, resources and timing 
constraints. 3T uses a non-linear hierarchical task net (HTN) planner known as AP (Elsaesser & Sanborn 
90). AP uses the highest level RAPs as its primitive plan operators, and can replan both spatially and 
temporally. The planner is efficient, but it becomes even more potent when its level of detail is abstracted 
to the RAPs of the sequencing layer below it.  It is important to note that once the planner generates a plan, 
it executes the plan by placing primitive plan actions on the sequencer's agenda and monitoring the results 
of the sequencer's actions. 

Communication among the layers and between skill managers uses the IPC message passing 
protocol (Simmons & James 97). With this communications infrastructure, data from any part of the system 
can be monitored by any other part of the system. 

A key aspect of 3T is that it gives developers the ability to integrate the continuous, near-real time 
control algorithms in the bottom layer with advanced AI algorithms in the top layer -- i.e., automated 
planners and schedulers -- that are event driven but more computationally expensive.  3T does this through 
the integrating action of the middle layer. Essentially, the middle layer translates the goal states computed 
by a planning/scheduling system into a sequence of continuous activities carried out by the skills layer, and 
interprets sensor information from the skills layer as events of interest to the upper layers. 

3T applications run autonomously due in large part to the principle of “cognizant failure” (Gat 
1998) embodied in each level of the architecture.  The skills level signals when any of the states it must 
achieve are lost; the sequencer uses alternative sequences when the primary methods fail, ultimately safing 
the controlled system; and the planner can synthesize alternative plans in light of the failures of the lower 
two tiers. 
 
END 3T SIDEBAR 
 

 
 In each of the previous efforts, the 3T team from AR&SD was required to 
interface the AI architecture to existing legacy software and hardware systems 
(Schreckenghost et al, 1998b).  In 1999, however, we began to support advanced water 
recovery projects that were build water processing subsystems from the ground up.  As a 
"charter member" of the water research group, the AR&SD AI team was able to play an 
influential role in the selection of hardware components and the design of the overall 
control of these systems.  For the first time, we were able to build the full 3T system 
starting from the analog-to-digital (A/D) converter boards used by the sensors and 
devices of the developing systems.   

In the summer of 1999 we used the bottom two layers of 3T to provide 
autonomous control for a second-generation biological water processor during a 450 day 
24/7 test. Then in January 2000 the advanced water research group received ALS funding 
for the yearlong integrated water recovery system test. 

 
 

Water Recovery System Sidebar 

Advanced Water Recovery System 
The advanced water recovery system (WRS) is a set of next generation WRS components, which promise 
to provide potable water using fewer consumables (filters, resins, etc.) and much less power than the 
components currently in use.  Figure 3 shows the four subsystems used in the integrated WRS test. The 
iWRS is comprised of 1) a biological water processor (BWP) to remove organic compounds and ammonia; 
2) an reverse osmosis (RO) subsystem to remove inorganic compounds from the effluent of the BWP; 3) an 



air evaporation system (AES) to recover additional water from the brine produced by the IRS; and 3) a post 
processing system (PPS) to bring the water to within potable limits.  
 The WRS planned for use on the International Space Station is a physical-chemical system that 
requires a resupply of roughly 3000 pounds of consumables (filters, membranes, etc.)   In contrast the 
advanced WRS developed and tested at JSC is projected to require only 250 pounds of consumables per 
year and use 50% less power.  
 
 

 
 
Figure 3 The AWRS subsystems.  At the left is biological water processor (BWP). Upper right is the rack 
containing the Reverse Osmosis (RO) subsystem below, the air evaporation subsystem (AES) on top, and 
the post processing system (PPS) in the left rear.  The bottom picture is a close up of the wick in the AES.   
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Figure 4. The water flow paths and the target quality values in milligrams or millisemens (an indirect 
measure of water quality) per liter for the iWRS.  The numbers in parentheses for the PPS effluent are those 
for typical residential tap water.  
 



 
 
Figure 5. The iWRS waste water collection system.  Human volunteers donate urine, showers, and hand 
washes, using liquid soap with the chemical composition of that to be used on the space station.  A 
computer system responds to the pushbuttons at each donation site to weigh and record each type of 
donations before sending the donation to the main feed tank for the iWRS.  Prepared solutions representing 
respiration water are added to the feed tank to complete a composition representative of that expected on 
the space station and/or planetary outposts. 
 
 
END of WRS SIDEBAR 
 

 
Build-up 
 
Using 3T allowed us to develop the control of for the iWRS in a modular fashion in two 
ways.  First, moving from bottom to top (see Figure 6), each layer has its own data 
structures, timing constraints and development tools that allow for parallel development 
of the software. So we were able to develop skills sets based on the evolving hardware 
specifications while simultaneously developing the sequencer procedures. Early on, as 
the water research team developed the design for each subsystem, one part of the 3T team 
wrote the sequencer procedures for each subsystem in the RAPs language (which in turn 
is written in Lisp) using "virtual skills", that is, Lisp skills connected to a Lisp simulation 
of the expected hardware. A virtual simulation of, say, the RO subsystem, could then be 
shown on a laptop to the WRS engineers and the control design refined in an iterative 



process even before the actual hardware was available.  The primary result of this process 
was a set of skill specifications for each subsystem (see Figure 7).   

As the hardware specifications became more firm, another part of the 3T team 
wrote the skills for the subsystems in C on a VxWorks rack in the AR&SD laboratories, 
using the skill specifications and testing them with rudimentary C simulations of the 
expected hardware.  When the hardware for a given subsystem came on line, the skills for 
that subsystem were installed in the test rack in the water lab.  After testing the individual 
data channels, the skills developers used a skill-level command GUI to activate and de-
activate individual skills. This development approach enabled the 3T team to deliver the 
low-level control for each subsystem within two weeks of the hardware installation of 
that subsystem.  Next, the sequencer procedures for the subsystem, known as reactive 
action packages (RAPs) were installed on the AI workstation and tested with 
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Figure  6a. The 3T Implementation for the iWRS test.  For each of the WRS subsystems we developed one skill 
manager, which ran on its own CPU.  The skill managers provided the A/D results to the all of the skills modules and 
broadcasted that data at specified intervals for use by extant clients for analysis and review.  The sequencer level 
managed task control (see Figure 6b), and the top level control was provided for the most part by the engineers running 
the test.
 



 
 
 

 
 

Figure 6b. 3T Control Computers for the iWRS.  On the left is a view of the 3T VME Rack behind the computer that is 
used as a secondary interface to the RO high-pressure pump.  On the right is a view of the (unattended) 3T Control 
Table. From foreground to back, the displays are two sequencer/planner displays, the IPC/skill manager display, the 
display of the broadcast server, and a display associated with the high-pressure pump used in the RO.  In the upper left is 
the  display shows the GUIs for each subsystem generated by the data broadcast from each skill manager. 
 
 



---------------------------------- 
Skills -- for the RO agent 
---------------------------------- 
 
Name      RO 
Type      device 
Params    interval 
Outs      none 
Function: A device skill that gets all the sensor values and provides them to  
the other skills. Also sends commands to the pumps and valves. Also every 
interval seconds, this skill broadcasts a data message with the values of all 
the channels listed above to the IPC server so that clients (e.g., a logging 
facility) can access them (see the IPC structure at the end of this document). 
 
Name      valve_position 
Type      query 
Params    valve (process/pps_select) 
Outs      value (for process:primary/secondary/purge/off/unknown;  
          for pps_select:pps/tank/reject/off/unknown), and result (okay or Err) 
Function: Checks V02 or V03. One of lines V02_i1 through  V02_i3 or V03_i1 
through V03_i3 will be hi, and the rest will be low. If all are low, the result 
is off. Any other pattern is unknown. 
 
Name      valve_at 
Type      event 
Params    valve (process/pps_select), value (for  
          process:primary/secondary/purge/off; for  
          pps_select:pps/tank/reject/off) 
Outs      result (okay/ERR)  
Function: Waits for V02_i1 through V02_i3 or V03_i1 through V03_i3 to indicate 
value (see the valve_position skill). When the condition is achieved the event 
returns result. 
 
Name      turn_valve 
Type      block 
Params    valve (process/pps_select), value (for  
          process:primary/secondary/purge/off;  
          for pps_select:pps/tank/reject/off) 
Outs      none 
Function: Sets one of V02_o1 through V02_03 to hi the rest to low, except for 
off when all lines will be set lo. 

 
Figure 7. Excerpts from the RO Skill Specifications 

 



 
(define-primitive-event (valve-at ?agent ?valve ?open-closed ?error) 
  (event-definition (:valve_at (:valve . ?valve) (:value . ?open-closed)))  
  (event-values :bound :bound :bound :unbound))  
 
(define-rap (turn-valve-p ?agent ?valve ?open-closed ?timeout) 
 
  (succeed (and (valve-position ?agent ?valve ?value ?error) 
                (= ?value ?open-closed))) 
  (timeout ?timeout) 
  (method  
    (primitive 
     (enable (:turn_valve (:valve . ?valve) (:value . ?open-closed)) 

      (wait-for (valve-at ?agent ?valve ?open-closed ?result)  
                 :succeed (?result)) 
     (disable :above) 
     )) 
  ) 
 
(define-rap (processing-start ?stage ?adjust-time)  
 
... 
 
(method purge 
          (context (and (= ?stage purge) 

           (valve-position roskm pps_select ?old-pos ?error) 
        (= ?old-pos pps) 
                        (nominal-pump-speed roskm feed ?wwsp) 
                        (default-timeout ?dto))) 
    (task-net 
     (sequence 
      (t1 (syringe-pump-p roskm start feed ?wwsp 30)) 
      (t2 (water-flowing-p roskm stop recirc 0 ?dto)) 
      (t3 (turn-valve-p roskm pps_select reject ?dto)) 
      (t4 (turn-valve-p roskm process purge ?dto)) 
      (t5 (turn-valve-p roskm pps_select tank ?dto))))) 
 
... 
 
) 
Figure 8. A primitive event, a primitive RAP and a high level RAP which use the skills from the skill spec shown 
previously. The event definition and the primitive enable clause invoke the C-code skills, whose name and arguments 
are delineated by colons. The primitive RAP succeeds when the required RO stage is purge and the pps-select valve is 
open to the pps.  In this case, the RAP starts the RO main feed pump, stops the recirculation pump, turns the RO 
process valve to the purge position and turns the pps-select valve first to the reject position and then to the tank 
position. 

 
the validated skills.  An example of the resulting RAPs is shown is Figure 8. The skills 
level remained relatively stable once the sensors and actuators were in place. We repeated 
the process for each subsystem.  Finally, additional sequences that integrated the 
subsystems were developed and tested. The total initial software development took on the 
order of four and a half months, using roughly one month for each subsystem and two 
weeks for integration testing. 

The second manner in which the modularity of the 3T system sped our 
development is that the architecture allows the independent development and testing of 
groups of ALS subsystems and a subsequent incremental integration of these subsystems.   
This aspect of the control development became important for the WRS team in dealing 
with the startup time of the BWP.  The microbes in the BWP take one to two months to 



form viable colonies to process feed water.  This inoculation period meant that bringing 
the other subsystems into test would be delayed by at least for that time period, and even 
longer if the inoculations were problematic.   

To give the water team more breathing room, the 3T group suggested that the 
water team divide the official start of the test into two components: the BWP and the RO, 
and then the RO and the other two subsystems. In the iWRS system the pivotal subsystem 
is the RO.  This system receives BWP effluent, processes it and provides product water 
for the two downstream systems.  In effect the BWP is independent of the downstream 
systems, so it could conceivably be started early while the downstream systems were still 
being built.  Because of the modularity of 3T, the initial iWRS could consist of the first 
two subsystems, with the output going to drain while the inoculation proceeded, and the 
second iWRS could include all four subsystems.  In this manner the water team started 
the test with only the first two subsystems in April of 2000, and brought the other three 
systems online in December of 2000, in time to make a January 2001 start. 
 
Controlling the iWRS System 
 
The control tasks for the final iWRS system that went into test in 2001 can be described 
for each subsystem and for the iWRS as a whole (see Figure 9). 
 

 
 

Figure 9: A Schematic Display of the iWRS as seen by 3T.  The BWP is in the upper left, the RO in the upper right, 
the AES in the lower right and the PPS in the lower left.  Gray lines indicate flow pipes; black pipes indicate water or 
air currently flowing. Small boxes with lines at junctures indicate motorized valves. 

 



The BWP. 
 
The main control task for the BWP is to keep the water in the gas-liquid-separator (GLS) 
at mid-level. This is accomplished by varying the speed of the feed pump while the draw 
from the RO main pump remains constant.  The other requirement is to monitor the 
pressures in the recycle loop as well as in the nitrifier tubes and to carry out automatic 
shutdown procedures (ASDs) in the case of off-nominal values.  For example, if one of 
the nitrifier tubes shows too high a pressure, the water and air pumps associated with that 
tube are shutdown and a warning is issued. 
 
The RO. 
 
The RO is the lynchpin subsystem, drawing water from the GLS and delivering permeate 
to the PPS and brine to the AES.  The RO must go through up to four distinct phases in 
each cycle.  The primary phase draws water into a coiled section of pipe that acts like a 
reservoir, while processing permeate in the outer loop of pipes shown in Figure 9.  In the 
secondary phase, the rejected water is concentrated into brine in the inner loop of pipes. 
The usual third phase is to purge the brine to the AES.  But periodically the membrane 
needs to be purged of particulate that collects on its surface by running the water 
counterclockwise in the inner loop during what is known as the slough phase. 

Additionally there are a number of ASDs associated with backpressure on the 
membranes, permeate conductivity and loss of pressure in the recirculation loops. 
 
The AES 
 
The AES processes the brine in batches.  When the brine fills the reservoir to the first 
level switch, the AES starts up, processing the brine until the switch reads dry, at which 
point it goes to standby awaiting another load.  The ASDs concern overheating and loss 
of condensing fluid.   

Additionally, the AES pumps condensate to the PPS when the condensate tank 
reaches a certain level or when the RO is not sending its condensate to the PPS. When the 
wick is spent, as indicated by the conductivity of the condensate, the AES engineers 
initiate a dry out procedure. 
 
The PPS 
 
The PPS controls monitor the input pressure.  When the pressure goes above a threshold 
that indicates water flow from either the AES or the RO, the O2 concentrator is started 
and a number of UV lamps are turned on commensurate with the measured TOC.  When 
the pressure falls below the threshold, the concentrator and lamps are turned off. An 
average TOC is calculated based on the instantaneous TOC and the accumulation in the 
product tank to determine whether the PPS output should be rejected to the BWP feed 
tank.  ASPs concern overheating of the lamps and high output conductivity indicating a 
breakthrough in the ion exchange beds. 
 



Overall Control 
 
The modularity of the hardware systems is such that these subsystems are considered four 
loosely coupled agents, which mainly react to their inputs and water quality, and only 
rarely respond to the operation of the other subsystems. The AES pumping condensate in 
the RO’s stead was previously mentioned. The RO monitors the level of the GLS in the 
BWP to insure that there is sufficient resource for it to draw upon.  And PPS pressure 
changes are corroborated by sensing the state of the pumps and valve configurations of 
the RO and AES.  For example, if the inlet pressure is not high enough to indicate water 
flow but either the RO or the AES is flowing water to the PPS, then the PPS will begin 
operations. 

Finally, when there is a complete ion exchange bed breakthrough, the PPS will notify 
the RO and the AES to recycle their effluent to the BWP feed tank. 
 
The Test 
 
The iWRS test consisted of series of test points each representing a different 
configuration and each slated to last until the iWRS product water could no longer be 
maintained at the required potable standard (see the target quality values in the WRS 
sidebar). This non-potable end point occurred when the last of the three ion exchange 
beds started allowing water above a pre-defined level of TOC concentration. These 
configurations were: 2 person, 24 hour operation; 2 person, 24 hour operation with 
condensate rejected to the feed tank to reduce the loading on the ion exchange beds; 4 
person, 24 hour operation with condensate rejected to reduce the loading on the ion 
exchange beds; 2 person, 18 hour operation; and 2 person 18 hour operation with 
condensate reject.  

Each test point calls for either different flow rates or full/partial reject of internal flows 
or both. Besides rejecting AES condensate, four person or 18 hour operations requires the 
RO and BWP to process water at an increased rate, with some of the permeate being 
returned to the BWP feed tank during the highest conductivity periods in the cycle. 

The first test point was begun in January of 2001.  A significant finding was that the 
ion exchange beds were performing so well that instead of thirty to forty days, a test point 
might take three months.  To reduce the length of the overall test to a manageable level, 
the water team resized the ion exchange beds to one third of their original size, and then 
restarted the test beginning with the first test point in March of 2001. 

On 25 December, the third ion exchange bed "broke through" for the last test point, 
marking the end of the test proper.  From January through mid-April of 2002 the team 
maintained the iWRS running in the first test point configuration to support a special 
antibiotic study by Texas Technical University. 

 
Control Results 
 
We consider the use of the 3T control system a resounding success of applied AI. The 
resulting software ran unattended for 98.75% of the test period (6684 of 6768 hours), 
averaging on the order of only 6 hours downtime per month (see the following section on 
problems encountered).  In an environment where the experimental hardware is being 



tested, this achievement is especially notable and can be explained by the combination of 
the modularity of our control design, and that fact that the upper layers of the architecture 
is written in Lisp. 
 
Advantages of Modular Design 

 
Calibrating instruments is a good example of how the modularity of the design 

limited system downtime.  For each sensor and variable command output, e.g., pressure 
and pump speed, the skills had a linear equation to convert the A/D counts to the 
appropriate device value, e.g., pressure or RPM.  Over time the instrument outputs drifted 
from those calibrated values and must be recalibrated.  The recalibration resulted in a 
new equation that had to be coded in the device skill, which then had to be recompiled.  
Since the instruments were grouped by subsystem, we only had to bring down the given 
subsystem in order to restart the newly compiled skill, and then only for the few seconds 
required for the skill to reconnect to the IPC server. 

  Another situation that exploited the modularity of our design concerned a 
subsystem shutdown, for example, if the RO experienced a high-pressure event and shut 
down.  With the RO down, there was no effluent being sent to the PPS and no brine being 
produced for the AES to process.  As described in the control section above, whenever 
the RO is not providing water to the PPS, the AES would send its condensate to the PPS.  
Eventually, though the condensate tank will empty and the AES will stop sending water 
to the PPS.  Without input water the PPS puts itself in standby mode; without brine to 
process, the AES also puts itself in standby mode.  Finally, without the RO drawing from 
the BWP, the level in the GLS of the BWP will begin to rise, causing the feed pump to 
slow down to compensate.  This compensation continued until the feed pump was 
stopped, thus putting the BWP in standby mode.  Thus, all the subsystems respond to the 
down RO by inevitably achieving a standby mode of operation. 

A similar situation took place when a subsystem was taken offline by the staff, 
such as when the AES wick was being changed out.  Each subsystem could be informed 
through the user interface as to the availability of the up- and downstream subsystems, 
and would reconfigure itself accordingly. For instance, if the AES was down, the RO 
brine would be directed to an overflow tank, which would subsequently be pumped back 
to the AES reservoir when the AES was operational. If the PPS was down, the AES and 
the RO would redirect their effluent back to the feed tank or to drain, depending on the 
needs of the test. 
 
Advantages of RAPs/Lisp 

 
That RAPS is a plan interpreter, and that the higher layers are written in Lisp 

allowed us to make changes in subsystem operation on the fly.  In addition to changing 
set points and warning levels interactively, RAPs could be modified while the subsystems 
were in operation.  RAPS are stored in a plan library and instances are created and put on 
the task agenda as other tasks are removed.  So we could store modified RAPs in the 
library, which would then be picked up the next time the RAPs processing called for 
them.  An example of modifying a RAP concerned the operation of the AES condensate 
pump.  Recall that, in order to maintain constant operation of the PPS for as long as 



possible, the AES condensate is pumped to the PPS whenever the RO is not sending its 
effluent to the PPS, e.g., when the RO is in purge mode.  Over the course of the test, this 
simple control scheme was expanded to include sending to the PPS whenever the tank 
was full to prevent overflow, inhibiting condensate flow whenever the PPS output 
conductivity was too high, and modifying the full condensate pumping scheme whenever 
the test point called for rejecting the AES output to the feed tank. 

Often, new RAPs were required that were unanticipated at the beginning of the 
test.  New RAPs were tested with virtual skills in the ER laboratories and then installed in 
the running system in the water laboratory.  An example of a new RAP was the one we 
created to augment the computation of the average and TOC carried out by the PPS skills.  
The average and allowed TOC are computed based on the TOC for increments of water 
volume deposited in the product tank, integrated over time, and requires both a measure 
of the instantaneous TOC reading, obtained from the TOC analyzer in the PPS, and the 
volume of water in the product tank, measured by a weight scale in the PPS.  Whenever 
the quality of the water from either the RO or the AES was low enough to trigger a high 
instantaneous TOC value, the PPS product water was redirected to the feed tank until 
such time as the quality dropped below that threshold.  During that time, since no water 
was being deposited to the product tank, the average and allowed TOC was not updated.   

Early in the test, what few high TOC spikes the PPS experienced were of 
relatively short duration.  As the test wore on, however, the AES wicks and RO 
membranes began to degrade, the high TOC incidents became more frequent and lasted 
longer, and as a result, the TOC calculations were becoming less and less accurate.  We 
needed a way to calculate the volume of water that would have flowed into the product 
tank in order to update the TOC calculations.  Such a volume could be computed from 
the flow rates of the water coming from the RO and the AES, but since the PPS skills and 
the skills for the RO operated on two different computer racks, the PPS skills could not 
access the required flow rates.  The solution was to have the TOC calculations picked up 
by the sequencer -- which had access to the flow data in the AES and the RO as well as 
the instantaneous TOC readings -- during the time the product water was being rejected.  
Once the average TOC dropped below the allowed TOC, the sequencer would redirect 
the PPS output to the product tank, and re-seed the PPS TOC calculations with the values 
computed during the low water quality time. 

One final note on the value of using the incremental compiler of Lisp.  
Frequently, in the early months of the test, the test engineers would desire additional 
information to be displayed on the main WRS monitor.  Examples of additional data 
displays not called for in the original design include the RO stage elapsed time and the 
allowed and average TOC (see Figure 9).  Since the entire interface was written in Lisp 
(we used Macintosh Common Lisp (ref) running on a Power Mac G4), a control engineer 
could build, debug and install such changes to the displays without disturbing the main 
control code. 

After the first month, the control code was placed under configuration control, so 
the types of changes described above were discussed with the water team in a weekly tag-
up meeting before being implemented.  Nonetheless, once the changes were approved, 
the water team appreciated the rapidity with which they were implemented. 
 



Adjustable Autonomy 
 
We designed the iWRS control system to run autonomously.   But during hardware build 
up, functional testing, and for the first three months of operation (January through March 
2001), it was important that the test engineers be able to command the system or its 
subsystems at all levels of operation.  So we let the interactive interfaces we control 
engineers used for code testing for use by the teat team.  These interfaces included 
commands for individual pumps, valves and relays, using primitive RAPs (see Figure 8 
for an example of a primitive RAP for turning a valve), commands to execute mid-level 
RAPs such as executing an RO purge, and commands to start or stop the autonomous 
operation of any subsystem, such as running the BWP in a stand-alone mode. 
 Being able to suspend parts of the control system's autonomy was important as 
well.  For example, mid-way through the test it became necessary for the BWP engineers 
to manually purge the individual tubes in the nitrifier portion of the BWP.  This purging 
often resulted in a low-pressure condition that would trigger a low-pressure ASD in the 
BWP control code.  To prevent the ASD during staff purge operations, we modified the 
ASD RAP to check the state of a RAP memory flag for staff purging.  When the fluent 
was present, the ASD would put out the ASD warning but would take no action.  Then 
we added interactive text to the WRS display (see Figure 9) that could be triggered to set 
the staff purge flag in memory and start a twenty-minute timer.  At the end of the twenty 
minutes, the timer code would remove the flag. 
 
Data Management & Distribution System 
 
Logging the data broadcast from the skills -- the sensed values and the commands sent to 
the devices -- was required to support data analysis by the staff both during and after the 
test.   We developed a graphical user interfaces (GUI) for each subsystem to display in 
analog form the data broadcast from the skills (see Figure 10), and also to set the logging 
rate for each subsystem.  Menu options on these displays allowed a user to view logged 
data, to setup strip charts, and to plot any data item being logged.   

These GUIs were run on the Linux computers in the water laboratory, but since 
the controls for the iWRS ran unattended, the engineering staff of the water team desired 
to view these displays on their PC workstations in their offices.  In response to this 
requirement, we ported the GUIs to the Windows environments used by the staff and 
installed the code on their workstations. Using these GUIS, the staff could log data from 
any or all subsystems to their computers as they desired, while the logs of record were 
kept in the water lab.  Throughout the test, new logging requirements from the water 
team changed the format of the data and also the variables displayed in the GUIs.  To 
give the staff access to the latest GUI code, we made the changes available via a web 
page.  A prompt when a GUI started up would allow the staff to download the new code 
and to update their GUI display accordingly. 



 
 

Figure 10: The GUI client for the BWP, showing the data broadcast from the BWP skill manager displayed on an 
analog of the BWP hardware. 

 
Unattended Operations 

 
Although the 3T control system ran unattended, the control team had to periodically 
monitor the system for power failure or hardware problems.  We set up a duty roster of 
3T control engineers to monitor the system.  Every six hours, every day including 
weekends, the control engineer on duty would check in on the system.  The engineer 
could start up the GUI clients on his remote computer and use a dial-up connection to 
receive and view the data broadcast from the water lab.  We also made the logged data 
available in columnar format at a NASA-JSC URL (see Figure 11) so that the on duty 
control engineer could monitor the system while on travel.  If there was a problem, the 
engineer would contact someone from the water team to handle it. 
 

  
 

Figure 11: A browser view of the broadcast data from the AES.  Data was normally recorded at 5 minute intervals. 



Lessons Learned 
 
3T was designed for the intelligent control of autonomous robots.  These robots never ran 
for longer than a few hours.  Our experience in applying this architecture to long duration 
ALS control systems and the WRS 3T system in particular has given us insights into the 
key differences between robots and ALS systems as well as their implications for control. 
 
ALS Systems Have Long Response Times 
 
A key aspect of ALS systems is the slow event times associated with them.  In our WRS 
system, turning a valve took three or four seconds, the PPS oxygen concentrator took a 
minute and a half to come up to speed and several minutes to turn off, and the AES 
heaters took five minutes to warm the air circulating in the AES and upwards of ten 
minutes to cool down.  As a result, we developed our sequence code as essentially a 
mixture of activation steps and monitors as opposed to the normal sequence of primitive 
enable and wait-for clauses.  When one of these long-term events, e.g., waiting for the 
oxygen concentrator to become operational, failed, it was often due to the fact that over 
the length of the test, the device was just taking several seconds longer to activate.  We 
became quite adept at recognizing this "activation drift" as the test went on.  
 
Related to the long activation response times is the fact that the WRS system level events 
occurred on the order of hours or days. So to find out if a system level change was having 
the desired effect we often waited for days or weeks.  An example of this had to do with 
determining the optimum number of RO cycles before having the controls perform a 
membrane slough.  An RO cycle typically completed every four and half hours.   At the 
beginning of the test, the system was directed to slough the membranes every eight 
cycles, or every 36 hours of processing.  As the test continued, the quality of the RO 
output water, called the permeate, tended to be worse toward the end of the last two 
cycles.  This suggested requiring a slough more often.  It ended up taking a week and a 
half to determine that the cycles-to-slough should be set to four to keep the permeate 
quality consistently high. 
 
In determining the optimal number of cycles between sloughs the RO engineer needed to 
correlate the permeate water quality with a count how many sloughs had taken place.  A 
slough took no more than four minutes to execute, but while the skills broadcast the data 
every 15 seconds, the data was logged at five minute intervals to minimize the amount of 
data required for analysis (of the WRS system events, only the RO slough event took less 
than five minutes to occur).  So the slough indicator -- the RO recirculation pump running 
in reverse at one third the normal RPM -- was often missing from the logs. To assist the 
RO engineer to quickly determine the number of sloughs that had occurred without 
having her scan through days of sequencer tracking logs, we built an event detector into 
the RO GUI which noted the indicator using the fifteen second data, but set it as a yes/no 
flag for the five minute log.  This detector turned out to be important, since with a new 
membrane or with varying amounts of RO water being recycled in different test points, a 
new cycles-to-slough value had to be determined as often as every month. 
 



ALS Systems Are Complex When Integrated 
 
With the possible exception of the BWP, we have found that individual ASL subsystems 
are relatively straightforward to control.  They normally require a startup procedure, 
several actuator check monitors (such as one to insure that the RO recirculation pump 
doesn't start before the feed pump), an ASD monitor and a shutdown and/or standby 
procedure. 
 
When several subsystems are integrated, however, the complexity increases and the need 
for look-ahead reasoning, such as the crop rotation scheduler for the 91-day human test 
discussed earlier, becomes evident. 
 
Our loosely coupled agent approach obviated the need for automated generative planning 
to achieve integrated control of the iWRS, but it did give rise to more complex RAPs 
code to handle the increased number of contexts, or system states that could arise.  For 
instance, the procedure that managed the level in the AES condensate pump discussed 
earlier, required only two methods (the number of methods roughly equates to the 
number of system states of concern for that procedure).  But integrating the AES with the 
rest of the WRS required an additional five methods and a rewrite of the original two. 
 
Long Duration Systems 
 
By their very nature, ALS systems are long running, carrying out their prescribed 
processing for weeks or months.  When anomalies occur they are rare, but must be 
detected and processed to prevent often catastrophic results.  In developing and 
maintaining the iWRS 3T system, we have come to understand several control 
implications of this long duration characteristic of ALS systems. 
 

1. Equipment will degrade.  During the twelve months of iWRS operation we 
witnessed the slow degradation of pressure transducers, flow meters, a dew point 
sensor, the AES blower and the main RO feed pump.  Sometimes the ultimate 
failure brings the test to a halt, such in the case of the RO feed pump.  With the 
other equipment, the degradation is gradual and difficult to detect, since the 
symptoms are often intermittent.  The point is that it sometimes takes months for 
the degradations to occur, and neither the water team nor the controls engineers 
had the experience to determine if the problem stemmed from software or 
hardware.  We had few utilities in place to help us "capture" the intermittent 
events and spent much time in each instance adding trace code and studying the 
results.  After about six months, we became familiar with character of each of the 
subsystems and were able to more easily ascertain the cause of these types of 
anomalies. 

 
2. Automation has to last longer than the hardware.  Besides loss of WRS hardware, 

we had to replace almost every computer used in the control system including the 
power supply in one of the VMW racks.  Disk failure and memory problems were 
easy to detect and repair, but the power supply problem taught us a fundamental 



rule about user acceptance of automation in long duration systems: the automation 
must last longer than the hardware.  What we mean here is best described by the 
situation surrounding the loss of the power supply.   

 
The microbes in the BWP could not go longer than a few hours without being 
"fed", i.e., having feed water circulating around the colonies.  The power supply 
to the rack controlling he BWP began to fail when only the BWP and RO were in 
test.  Early on, the only indication there was a problem was that the rack CPUs 
would reset, zeroing the pump speeds and thus halting feed water to the BWP.  
When this happened in the early morning hours, the water laboratory personnel 
would arrive in the morning to find the colonies destroyed.  The first failure 
required a two-week re-inoculation of the BWP, and the team assigned humans to 
monitor the control system around the clock.  It was not clear why the CPUs had 
reset, and once the software was restarted the system ran for days before another 
reset occurred. 
 
After experiencing more frequent resets over a weekend, the water team decided 
to take both subsystems "off controls" and run them manually, that is, all 
actuators running "open-loop".  The team decided that the chance of a BWP or 
RO hardware failure was far less likely than a catastrophic control failure.  Even 
after the control team replaced the power supply -- which is still operational as of 
this writing -- the water team did not put the subsystems back "on controls" for 
two weeks and did not cancel the around the clock personnel shifts for another 
two weeks. 
 

3. All software will have memory leaks.  Most software developers delivering an 
application will write their code carefully enough to make efficient use of 
resources.  But there may be inefficiencies in the resulting code that will not 
appear with the normal amount of debug testing.  Such inefficiencies have a 
cumulative effect and will not make themselves felt until after weeks of operation.  
We discovered that all the software we developed and installed in the water 
laboratory "leaked" memory, that is, the code was using small amounts of 
memory resources with releasing those resources.  Memory leaks were discovered 
in the skill managers, the IPC clients and in the sequencer.  The lesson here is if 
possible run the code with memory meters wherever possible for several days 
before delivery to detect memory leaks. 

 
4. Safety shutdowns are required at the subsystem level. No matter the number of 

precautions taken to prevent system failure, there was always a set of variables 
outside of our control.  Chief among these were network problems and power 
failures.  Five or six times over the course of a twelve-month test we experienced 
random faulty data packets.  These would produce a data set that would cause the 
sequencer to break and thus stop reading IPC messages.  This event inevitably 
occurred after the last check by the control engineers (typically around 11 pm), 
and before the laboratory personnel arrive in the water lab six hours later.  
Without the sequencer reading its messages, messages would build up in the IPC 



server and after about an hour, the server would crash, bringing down all clients 
connected to it, including the logging GUIs and the skill managers.   

When the skill managers died they left the last settings on the pumps and 
valves on the A/D boards.  In a typically worst-case scenario had the failure occurred 
while the condensate pump was on, or the BWP controls were in the middle of 
adjusting the GLS level and the feed pump was running lower than usual.  In the 
former case, the condensate pump would pump the tank dry and start pushing air into 
the ion-exchange beds of the PPS (requiring a shutdown and a manual repacking of 
the beds); in the latter case, the GLS would be pumped dry by the RO action and the 
RO would draw air at high pressure into its membranes, rendering them useless.
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